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Abstract

The Differential Transformation Method (DTM) and the Non Standard Finite Difference Scheme (NSFDS)
are alternative numerical techniques used to solve a system of linear and nonlinear differential equations. In this
paper, we construct the DTM and NSFDS for a mathematical model of plant disease transmission dynamics and
compare their solutions to that generated by MATLAB ode45 routine, which is the well-established numerical
routine. The solutions of the DTM and NSFDS are in good agreement with MATLAB ode45 routine in the
small time step. However, when the time step is larger, the NSFDS performs better than the DTM.
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1. INTRODUCTION

Mathematical models, which are deterministic or stochastic, have been widely used to understand complex
phenomena [22], [20], [21], [24]. In general, the deterministic mathematical models are used because it
easier to handle [29], [10]. The model is in the form of a system of linear or nonlinear differential equations.
Although some analytical calculation such as equilibrium points or stability can be made, the analytical
solution of the model is not easily derived. Therefore, a numerical approach is generally used.

A number of numerical methods have been developed and widely used to solve mathematical models [6].
Of these, Runge-Kutta method is one of the well-established numerical technique that has been widely
implemented. This scheme is a foundation for the development of MATLAB ode45 routine, which is mostly
used to solve differential equations [30]. This routine is generally stable and can generate the properties
and behavior of the models such as chaotic and oscillation [30], [14]. Therefore, this has been extensively
used to solve many deterministic mathematical models [14], [22], [32]. There are also other alternative
numerical techniques that can be used when the well-established numerical methods fail in generating the
solutions. They are the Differential Transformation Method (DTM for short) [34], [8] and the Non Standard
Finite Difference Scheme (NSFDS for short) [15], [16], [3]. These are the promising approach used to solve
deterministic mathematical models.

The DTM is a semi-analytic numerical technique which depends on the Taylor series. This method was
first proposed by Zhou [34] and has been modified to overcome its limitation [26], [25]. The DTM gives an
analytical solution in the form of a polynomial and does not require symbolic computation of the derivatives.
This method has been applied for solving various problems [26], [23], [4]. However, the classical DTM has
some drawbacks: the obtained solution may diverge from the exact solution and gives good approximation only
in a small region. Therefore, to overcome and improve its accuracy, it is required to divide the time domain
into n sub-domain [26], and hence the system of equations can be solved in each domain. Different to Runge-
Kutta, this scheme is implemented directly to the model without requiring linearisation or discretisation [4],
[26]. This may avoid the error due to discretisation [26]. The NSFDS is another numerical scheme that
has been proposed by Mickens [15]. This scheme is based on the standard finite difference scheme but the
denominator part is substituted by a nonnegative function φ(h) and a nonlocal approximation of nonlinear
terms is used [15], [17]. Different from the DTM, the scheme is constructed by discretising the equation.

The DTM and NSFDS have been utilised to solve many deterministic mathematical models. In general,
the solutions of both approaches can generate the model’s behaviour such as oscillations and chaos [27],
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[31], [26]. Motivated by this, in this paper, we employ the DTM and NSFDS for solving a plant disease
mathematical model. Since analytical solutions of the model cannot be generated, we cannot compare their
numerical solutions to the exact ones. However, because the well-established MATLAB ode45 routine, which
is based on Runge-Kutta method, can provide the solutions of the model, we compare the numerical solutions
using the DTM and NSFDS to that of the MATLAB ode45 routine. This aims to determine the performance
of the DTM and NSFDS.

This paper is organised as follows. Section 2 presents the numerical methods. In Section 3, mathematical
model of plant disease transmission is presented. In Section 4, the DTM and NSFDS for the model is
presented followed by the numerical experiments in the next section. Finally, the discussions and conclusions
are presented.

2. NUMERICAL METHODS

This section presents the differential transformation method (DTM) and nonstandard finite difference
scheme (NSFDS). These methods are used to solve plant disease mathematical models and then the numerical
results of them are compared.

2.1. Differential Transformation Method
The DTM is a semi analytical numerical approach that depends on the Taylor series. The method can be

used for solving linear and non-linear differential equations. It uses the form of polynomial as approximations
of the solutions [12], [26], [4], [25], [8]. Here we employ the DTM to solve a plant disease mathematical
model.

With reference to the articles [26], [25], [8], [4], the basic definitions of the differential transformation are
given as follows.

Definition 1. Let f(x) is a differentiable function then the differential transform of kth derivative of that
function is defined as

F (k) =
1

k!

[
dkf(x)

dtk

]
(1)

where f(x) is the original function and F (x) is the transformed function.

Definition 2. The differential inverse of the transformed function is defined as

f(x) =

∞∑
k=0

F (k)(x− x0)k. (2)

From Equation (1) and (2), we obtain

f(x) =

∞∑
k=0

(x− x0)k

k!

dkf(x)

dxk
|x=x0

. (3)

Equation (3) means that the concept of DTM is obtained from Taylor series expansion.
Using definitions (1) and (2), we can obtain the operation properties of the DTM as presented in Table I.

In real application, we only use finite series for f(x) as

f(x) =

n∑
k=0

F (k)(x− x0)k. (4)

This is known as the classical differential transformation method. In this paper, we employ multi-step
differential transformation method [26], which is explained below.

Suppose that we aim to derive the solution in the time domain (0, X). The time domain is divided into m
subintervals [xm−1, xm] (see Figure 1). For the first time domain, [0, x1], the solution is approximated using
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f1(x) f2(x) f3(x)
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.   .   .  

f(x)

Fig. 1: Time step and approximation function in each domain

f1(x) =

n∑
k=0

F1(k)x
k. (5)

with initial condition f1(0) = f0. For m ≥ 2, and at each subintervals [xm−1, xm], the initial conditions is
the value of f(x) at the last time of the previous time step, fm−1(m − 1) = fm(0) and is approximated
using

fm(x) =

n∑
k=0

Fm(k)(x− xm−1)k, x ∈ (xm−1, xm). (6)

The solution is given by

f(x) =


f1(x), t ∈ (0, x1),

f2(x), t ∈ (x1, x2)
...
fm(x), t ∈ (xm−1, xm).

(7)

Let u(t) and v(t) are two functions with time t and U(z) and V (z) are transformed functions corresponding
to u(t) and v(t), the operations of differential transformation are given in Table I.

TABLE I: Operation of differential transformation

Original function Transformed function
f(t) = u(t) + v(t) F (z) = U(z) + V (z)
f(t) = au(t) F (z) = aU(z)

f(t) = u(t)v(t) F (z)=
∑k
l=0 V (l)U(z − 1)

f(t) =
dmu(t)
dtm F (z) = (z + 1)(z + 2)(z + 3) . . . (z +m)U(z +m)

f(t) =
du(t)
dt F (z) = (z + 1)F (k + 1)

f(t) = tm F (z) = δ(z −m) where 1 if z = m, and , 0 if z 6= m

f(t) = exp(λt) F (z) = λz

z!

f(t) = (1 + t)m F (z) =
m(m−1)...(m−z+1)

z!
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2.2. Non Standard Finite Difference Scheme (NSFDS)
The NSFDS has been proposed by Mickens [15]. Different to the standard numerical methods, The NSFDS

is based on two fundamental rules [3], [15], [16], which are
1) Using nonlocal approximation. For example,

x2 → xnxn+1, x3 → 2(xn)3 − (xn)2xn+1.

2) Discretisation of derivatives is done by using the nonnegative function φ(h) = h+O(h2).
Let define the derivative as follows

df(t)

dt
=
f(t+ h)− f(t)

φ(h)
+O(φ(h)) as h→∞ (8)

where φ(h) is real-valued function on < which is called denominator function. This should satisfy the
following properties: (i) φ(h) = h+O(h2), and (ii) 0 < φ(h) < 1 for all h > 0 [18].

3. MATHEMATICAL MODEL

We present a mathematical model for plant disease transmission dynamics with preventive, curative, and
roguing treatments. Examples of other mathematical models for plant disease transmission dynamics can be
seen in [1], [9], [5]. The model is in the form of a system of nonlinear differential equations where the
population is divided into five compartments: Susceptible (S), Protected (P ), Exposed (E), Infected (I) and
Recovered (R). The curative treatment is applied on the exposed and infected plants, and the preventive one
is applied on the susceptible plant. The roguing is constantly applied at a rate, η, in the exposed and infected
stages.

The population of susceptible plants increases because of replanting at a rate r and die due to natural
death, µ. The exposed and infected plants can transmit the disease and hence the susceptible plants can be
infected by exposed and infected plants at a rate ck1 and k1, respectively. The value of c is between zero and
one. After being given the preventive treatment, the susceptible plants are protected at a rate β. However,
there is a possibility that the protected plants move to susceptible compartment at a rate δ due to loss of the
effectiveness of the preventive treatment. Moreover, the recovered plants can die due to natural death rate,
µ, and cumulative effects of the disease, α3. The schematic representation of the model is given in Figure 2.
Based on the assumptions, we obtain the mathematical model as follows

Fig. 2: Schematic representation of the plant disease mathematical model (Model (9)).



114 M. Z. NDII, N. ANGGRIANI and A. K. SUPRIATNA

dS

dt
= r(K −N)− µS − k1

SI

K
− ck1

SE

K
− βS + δP,

dP

dt
= βS − δP − µP,

dE

dt
= k1

SI

K
+ ck1

SE

K
− (µ+ k2 + η + p)E,

dI

dt
= k2E − (µ+ k3 + η + p)I,

dR

dt
= k3I − (µ+ α3)R+ pI + pE.

(9)

4. DIFFERENTIAL TRANSFORMATION METHOD AND NON STANDARD FINITE DIFFERENCE
SCHEME FOR THE MODEL

This section presents the DTM and NSFDS for Model (9).

4.1. The Differential Transformation Method for the model
The model is transformed using the operation properties of the differential transform as given in Table I.

The transformed form of the model is given as follows,

S(z + 1) =
1

z + 1
[rK − rN(z)− µS(z)− k1

K

z∑
l=0

S(l)I(z − l)−

ck1
K

z∑
l=0

S(l)E(z − l)− βS(z) + δP(z)]

P(z + 1) =
1

z + 1
[βS(z)− δP(z)− µP(z)]

E(z + 1) =
1

z + 1
[
k1
K

z∑
l=0

S(l)I(z − l) + ck1
K

z∑
l=0

S(l)E(z − l)− µE(z)

− k2E(z)− ηE(z)− pE(z)]

I(z + 1) =
1

z + 1
[k2E(z)− µI(z)− k3I(z)− ηI(z)− pI(z)]

R(z + 1) =
1

z + 1
[k3I(z)− µR(z)− α3R(z) + pE(z) + pI(z)]

(10)

where S(0) = S0, P(0) = P0, E(0) = E0, I(0) = I0, R(0) = R0 Taking the inverse of the transformed
model (Equation (10)), we obtain the solution of the model in each time step in the form of the power series
as follows,

S =


S(t1) =

∑N
k=0 S(z)(t− t0)z, t ∈ [x0 x1],

...
S(tm) =

∑N
k=0 S(z)(t− tm−1)z, t ∈ [xm−1 xm],

(11)

P =


P (t1) =

∑N
z=0 P(z)(t− t0)z, t ∈ [x0 x1],

...
P (tm) =

∑N
z=0 P(z)(t− tm−1)z, t ∈ [xm−1 xm],

(12)

E =


E(t1) =

∑N
z=0 E(z)(t− t0)z, t ∈ [x0 x1],

...
E(tm) =

∑N
z=0 E(k)(t− tm−1)k, t ∈ [xm−1 xm],

(13)
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I =


I(t1) =

∑N
z=0 I(z)(t− t0)z, t ∈ [x0 x1],

...
I(tm) =

∑N
z=0 I(z)(t− tm−1)z, t ∈ [xm−1 xm],

(14)

R =


R(t1) =

∑N
z=0 R(k)(t− t0)k, t ∈ [x0 x1],

...
R(tm) =

∑N
z=0 R(k)(t− tm−1)k, t ∈ [xm−1 xm].

(15)

Equations (11) - (15) are the solutions of Model (9). The time domain is divided into x1, x2, ..., xm.

4.2. Non Standard Finite Difference Scheme for the model
In this section, we implement the NSFDS to convert Model (9) into the discrete system and compare the

numerical solutions of the model to that obtained using the DTM and MATLAB ode45 routine.
Let define Sn, Pn, En, In and Rn the approximation of S(nh), P (nh), E(nh), I(nh) and R(nh)

respectively where n = 0, 1, 2, 3, 4, ... and h > 0 the step size of the scheme. The approximation scheme for
the Model (9) is given as follows,

Sn+1 − Sn
φ(h)

= r(K − (Sn + Pn + En + In +Rn))−
k1
K

(Sn+1In + cSn+1En))− (β + µ)Sn+1 + δPn,

Pn+1 − Pn
φ(h)

= βSn+1 − (δ + µ)Pn+1,

En+1 − En
φ(h)

=
k1
K

(Sn+1In + cSn+1En))− (µ+ k2 + η + p)En+1,

In+1 − In
φ(h)

= k2En+1 − (µ+ k3 + η + p)In+1,

Rn+1 −Rn
φ(h)

= k3In+1 + p(En+1 + In+1)− (µ+ α3)Rn+1.

(16)
Rearrange Equation (16) to obtain

Sn+1 =
Sn + φ(h) (r(K − Sn − Pn − En − In −Rn) + δPn)

1 + φ(h)
(
k1
K (In + cEn) + β + µ

) ,

Pn+1 =
Pn + φ(h)βSn+1

1 + φ(h)(δ + µ)
,

En+1 =
En + φ(h)

(
k1
K Sn+1(In + cEn)

)
1 + φ(h)(µ+ k2 + η + p)

,

In+1 =
In + φ(h)k2En+1

1 + φ(h)(µ+ k3 + η + p)
,

Rn+1 =
Rn + φ(h) (k3In+1 + p(En+1 + In+))

1 + φ(h)(µ+ α3)
.

(17)

Note that K > (Sn +Pn +En + In +Rn) meaning that (K − (Sn +Pn +En + In +Rn)) > 0. Therefore,
Equation (17) satisfies the positivity condition. We use the denominator function as follows

φ(h) =
exp (µh)− 1

µ
. (18)

Further analysis shows that the model has two equilibrium points which are the same as the deterministic
model. However, we do not present here as this is not the main focus of this article.
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5. NUMERICAL EXPERIMENTS

In this section, we present the numerical simulations of the model using DTM, NSFDS, and MATLAB
ode45 routine. We use the time step of 0.01 and 0.5 for the DTM and NSFDS, and error tolerance of 10−5 for
MATLAB ode45 routine. We perform numerical simulations of disease-free and endemic equilibrium points.
we use the parameter values which is given in Table II except k1 = 0.3 for endemic equilibrium points [1].

TABLE II: Parameter descriptions, values and references for Model (9).
The units of parameters are in day−1 except for N , K, and c

Parameters Description Value Refs
N Total plant populations S+P+E+I+R
K Total maximum plant 1000 [7]
β The effectiveness of preventive treatment 0.0052 [7]
δ Loss of protection effectiveness 0.0048 [7]
r Replanting rate 0.01 [7]
η Roguing rate 0.0023 [7], [33]
p The effectiveness of curative treatments 0.0025 [2]
k1 The transmission rate 0.002 [7], [2]
k2 The rate of progression from exposed to infectious class 0.0056 [2]
k3 Recovery rate 0.00133 [7]
µ Natural Death rate 0.0008 [7]
α3 Death due to cumulative disease effects 0.00033 [7]
c The transmission factor for exposed plants 0.5 [2]

Figures 3 and 4 show the numerical simulations of disease-free equilibrium point. It is clear that if h = 0.01,
the solutions of the model using the DTM and NSFDS agree well with that of MATLAB ode45 routine. On
the other hand, if we increase the time step (h = 0.5), the solutions of the DTM are different to the NSFDS
and MATLAB ode45 routine.
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Fig. 3: Numerical simulation of the model for disease-free equilibrium using Differential Transformation
Method (solid black), Non Standard Finite Difference Scheme (solid blue) and ode45 MATLAB routine
(dashed red). Here we use the time step of 0.01 for the DTM and NSFDS and error tolerance of 10−5 for
MATLAB ode45 routine.
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Fig. 4: Numerical simulation of the model for disease-free equilibrium using Differential Transformation
Method (solid black), Non Standard Finite Difference Scheme (solid blue) and ode45 MATLAB routine
(dashed red). Here we use the time step of h=0.5 for the DTM and NSFDS and error tolerance of 10−5 for
MATLAB ode45 routine.
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Fig. 5: Numerical simulation of the model for endemic equilibrium using Differential Transformation Method
(solid black), Non Standard Finite Difference Scheme (solid blue) and MATLAB ode45 routine (dashed red).
Here we use the time step of 0.01 for the DTM and NSFDS and error tolerance of 10−5 for MATLAB ode45
routine.



118 M. Z. NDII, N. ANGGRIANI and A. K. SUPRIATNA

Time (days)
0 500 1000 1500 2000

P

0

20

40

60

80

Time (days)
0 500 1000 1500 2000

E

0

500

1000

DTM
NSFDS
ode45

Time (days)
0 500 1000 1500 2000

I

0

100

200

300

400

Time (days)
0 500 1000 1500 2000

R
0

200

400

600

Fig. 6: Numerical simulation of the model for endemic equilibrium using Differential Transformation Method
(solid black), Non Standard Finite Difference Scheme (solid blue) and MATLAB ode45 routine (dashed red).
Here we use the time step of 0.5 for the DTM and NSFDS and error tolerance of 10−5 for MATLAB ode45
routine.
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Fig. 7: Numerical simulation of the model for endemic equilibrium using Differential Transformation Method
with the time step of three.
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Fig. 8: Numerical simulation of the model for endemic equilibrium using Non Standard Finite Difference
Scheme (solid blue) and MATLAB ode45 routine (dashed red). Here we use the time step of 3 for the NSFDS
and error tolerance of 10−5 for MATLAB ode45 routine.

Figures 5 and 6 show numerical simulations of endemic equilibrium point using these three methods. We
found similar results as that for disease-free equilibrium. The DTM and NSFDS agree well with MATLAB
ode45 if the time steap is 0.01 but the DTM gives different results if the time step is 0.5. Furthermore, if we
increase the time step, the DTM cannot converge and fails in generating the model’s solutions (see Figure 7),
whereas the NSFDS and MATLAB ode45 routine converge and give similar solution (see Figure 8). It is clear
that when the time step is large (h = 3), the numerical solutions generated by NSFDS still performs better
than that of the DTM.

6. DISCUSSIONS

In this paper, the DTM and NSFDS are constructed to simulate a mathematical model of plant disease
transmission. The simulation results are then compared to the well-established MATLAB ode45 routine. It
shows that the solutions of the DTM and NSFDS give similar results to the MATLAB ode45 routine for the
small time step. However, when the time step increases, the performance of NSFDS is better than that of
the DTM. This confirms the previous findings that the DTM performs well in the small time step. If the
time step is larger, the DTM may not converge [26]. On the other hand, the NSFDS can perform well in
the large time step [15], [19]. Although the time domain is divided into m sub domain and the solutions is
obtained from each domain [26], the chosen time step still play important role in determining the accuracy
of the solutions generated by the DTM. There are also other variants of the DTM that may provide different
results in terms of accuracy [25], [28], [13], [11] but this is not the focus of the paper. Interested readers
can employ other variants of the DTM and compare the results to the NSFDS. Our findings suggest that the
NSFSD may be the first choice when the standard numerical methods fail in generating the solution of the
model.
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7. CONCLUSION

In this paper, we compare the numerical results of differential transformation method and non standard finite
difference scheme. We found that the result nonstandard finite difference scheme performs well in comparison
to the differential transformation method in particular for the large timestep h. Nonstandard finite difference
scheme can be an alternative for solving a system of differential equations when the traditional methods such
as Runge-Kutta fail in generating solutions.
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